13 research outputs found

    Semantic array programming in data-poor environments: assessing the interactions of shallow landslides and soil erosion

    Get PDF
    This research was conducted with the main objective to better integrate and quantify the role of water-induced shallow landslides within soil erosion processes, with a particular focus on data-poor conditions. To fulfil the objectives, catchment-scale studies on soil erosion by water and shallow landslides were conducted. A semi-quantitative method that combines heuristic, deterministic and probabilistic approaches is here proposed for a robust catchment-scale assessment of landslide susceptibility when available data are scarce. A set of different susceptibility-zonation maps was aggregated exploiting a modelling ensemble. Each susceptibility zonation has been obtained by applying heterogeneous statistical techniques such as logistic regression (LR), relative distance similarity (RDS), artificial neural network (ANN), and two different landslide-susceptibility techniques based on the infinite slope stability model. The good performance of the ensemble model, when compared with the single techniques, make this method suitable to be applied in data-poor areas where the lack of proper calibration and validation data can affect the application of physically based or conceptual models. A new modelling architecture to support the integrated assessment of soil erosion, by incorporating rainfall induced shallow landslides processes in data-poor conditions, was developed and tested in the study area. This proposed methodology is based on the geospatial semantic array programming paradigm. The integrated data-transformation model relies on a modular architecture, where the information flow among modules is constrained by semantic checks. By analysing modelling results within the study catchment, each year, on average, mass movements are responsible for a mean increase in the total soil erosion rate between 22 and 26% over the pre-failure estimate. The post-failure soil erosion rate in areas where landslides occurred is, on average, around 3.5 times the pre-failure value. These results confirm the importance to integrate landslide contribution into soil erosion modelling. Because the estimation of the changes in soil erosion from landslide activity is largely dependent on the quality of available datasets, this methodology broadens the possibility of a quantitative assessment of these effects in data-poor regions

    Land Cover and Soil Erodibility within the e-RUSLE Model

    No full text
    <p>Bosco, C., de Rigo, D., 2013. <strong>Land Cover and Soil Erodibility within the e-RUSLE Model</strong>. <em>Scientific Topics Focus 1</em>, MRI-11b13. Notes Transdiscipl. Model. Env., Maieutike Research Initiative. doi: 10.6084/m9.figshare.856670</p> <p>Version: DRAFT 0.1.2<br>This is a preliminary version. The views expressed are those of the authors and may not be regarded as stating an official position of mentioned organisations.</p> <p>Ā </p> <p><strong>Land Cover and Soil Erodibility within the e-RUSLE Model</strong></p> <p>Ā </p> <p>Claudio Bosco Ā¹ Ā² ā“ and Daniele de Rigo Ā² Ā³ ā“<br><br>1 Loughborough University, Department of Civil and Building Engineering,<br>Loughborough, United Kingdom<br><br>2 Joint Research Centre of the European Commission,<br>Institute for Environment and Sustainability, Ispra, Italy<br><br>3 Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy<br><br>4 Maieutike Research Initiative, Milano, Italy</p> <p>Ā </p> <p>Soil is a valuable, non-renewable resource that offers a multitude of ecosystems goods and services. At geological time-scales there is a balance between erosion and soil formation, but in many areas of the world today there is an imbalance with respect to soil loss and its subsequent deposition, principally caused by anthropogenic activity and climate change. Detailed methods regarding soil erosion dynamics are growingly available at local and catchment scale. The integrated assessment of natural hazards often require wider scales to be considered. At these scales, computational modelling need to deal with multiple sources of uncertainty. This complex modelling activity is required in order to assess appropriate management options (Integrated Natural Resources Modelling and Management, INRMM). <br><br>There is usually a discrepancy between the spatial scale at which the process is studied and formulated, the scale at which information is available (e.g. a generalized value for land use or land cover unit), and the scale at which policy-makers or managers need to make decisions (watersheds, regions or wider scale). Modelling strategies typical of the local scale may not be suitable for large scale analysis. At regional or wider scale, the predictive power of existing models is still limited. Empirical approaches based on regressions may offer a way for reducing the modelling uncertainty (mainly reducing the input parameters uncertainty), partially explaining why regression-based models often better predict soil erosion than physically based models. <br><br>The present report shows the way followed for calculating the cover-management and the soil erodibility factor in applying the e-RUSLE soil erosion model at pan-European scale. The e-RUSLE is a model that estimates soil loss due to sheet and rill erosion extending a well-established empirical model. The extended model is based on the Revised Universal Soil Loss Equation (RUSLE). e-RUSLE is an array-based, semantically enhanced modification of the RUSLE exploiting the multiplicity intrinsic in large scale complex and uncertain problems. Its architecture takes advantage from the semantic array programming (SemAP) paradigm. <br><br>The model considers seven main factors controlling soil erosion: the erosivity of the eroding agents (water), the erodibility of the soil, the slope steepness and the slope length of the land, the land cover, the stoniness and the human practices designed to control erosion. In an effort for increasing the reproducibility in soil erosion modelling and for obtaining the most complete and homogeneous pan-European coverage, our attention was mainly focused in using only publicly available datasets and free scientific software for applying the e-RUSLE model and its factors. Implementing the e-RUSLE model we also introduced an innovative SemAP ensemble model, based on climatic similarity, for estimating rain erosivity from multiple available empirical relationships. Further researches are ongoing for applying the same technique to the cover-management factor, in order to obtain a more homogeneous pan-European cover. <br><br></p> <p>Ā </p

    Visual Validation of the e-RUSLE Model Applied at the Pan-European Scale

    No full text
    <p>Bosco, C., de Rigo, D., Dewitte, O., 2014. <strong>Visual Validation of the e-RUSLE Model Applied at the Pan-European Scale</strong>. <em>Scientific Topics Focus 1</em>, MRI-11a13. Notes Transdiscipl. Model. Env., Maieutike Research Initiative. doi: 10.6084/m9.figshare.844627</p> <p><br>Version: DRAFT 0.4.2<br>This is a preliminary version. The views expressed are those of the authors and may not be regarded as stating an official position of mentioned organisations.</p> <p>Ā </p> <p>Ā </p> <p><strong>Visual Validation of the e-RUSLE Model Applied at the Pan-European Scale</strong></p> <p>Claudio Bosco Ā¹ Ā² ā“, Daniele de Rigo Ā² Ā³ ā“ and Olivier Dewitte āµ</p> <p>1 Loughborough University, Department of Civil and Building Engineering,<br>Loughborough, United Kingdom</p> <p>2 Joint Research Centre of the European Commission,<br>Institute for Environment and Sustainability, Ispra, Italy</p> <p>3 Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy</p> <p>4 Maieutike Research Initiative, Milano, Italy</p> <p>5 Royal Museum for Central Africa, Department of Earth Sciences, Tervuren, Belgium</p> <p>Ā </p> <p>Ā </p> <p>Validating soil erosion estimates at regional or continental scale is still extremely challenging. The common procedures are not technically and financially applicable for large spatial extents, despite this some options are still applicable.</p> <p>For validating the European map of soil erosion by water calculated using the approach proposed in Bosco et al. [1] we applied alternative qualitative methods based on visual evaluation. The 1 km 2 map was validated through a visual and categorical comparison between modelled and observed soil erosion.</p> <p>A procedure employing high-resolution Google Earth images and pictures as validation data is here shown. The resolution of the images, rapidly increased during the last years, allows for a visual qualitative estimation of local soil erosion rates.</p> <p>A cluster of 3x3 K m 2 around 85 selected points was analysed by the authors. The results corroborate the map obtained applying the e-RUSLE model. The 63% of a random sample of 732 grid cells are accurate, 83% at least moderately accurate with a bootstrap p ā‰¤ 0.05).</p> <p>For each of the 85 clusters, the complete details of the validation also containing the comments of the evaluators and the geo-location of the analysed areas have been reported.</p> <p>Ā </p> <p>Ā <br><strong>References</strong></p> <p><br>[1] Bosco, C., de Rigo, D., Poesen, J., Dewitte, O., Panagos, P., 2014. Modelling Soil Erosion<br>at European Scale: Towards Harmonization and Reproducibility. Nat. Hazards Earth<br>Syst. Sci. Discuss.</p> <p>[2] Merritt, W.S., Letcher, R.A., Jakeman, A.J., 2003. A review of erosion and sediment<br>transport models. Environmental Modelling and Software 18 (8), 761-799.</p> <p>[3] Aksoy, H., Kavvas, M. L., 2005. A review of hillslope and watershed scale erosion and<br>sediment transport models. Catena 64 (2), 247-271.</p> <p>[4] Jetten, V., de Roo, A., Favis-Mortlock, D., 1999. Evaluation of field-scale and<br>catchment-scale soil erosion models. Catena 37, 521-541.</p> <p>[5] Scott, D.F., Van Wyk, D.B., 1990. The effects of wildfire on soil wettability and<br>hydrological behaviour of an afforested catchment. Journal of Hydrology 121 (1-4),<br>239-256. DOI: 10.1016/0022-1694(90)90234-o .</p> <p>[6] Bennett, G.L., Molnar, P., Eisenbeiss, H., McArdell, B.W., 2012. Erosional power in the<br>swiss alps: characterization of slope failure in the Illgraben. Earth Surface Processes<br>and Landforms 37 (15), 1627-1640. DOI: 10.1002/esp.3263 .</p> <p>[7] Letey, J., 2001. Causes and consequences of fire-induced soil water repellency.<br>Hydrological Processes 15 (15), 2867-2875.</p> <p>[8] Ouyang, W., Skidmore, A. K., Hao, F., Wang, T., 2010. Soil erosion dynamics<br>response to landscape pattern. Science of The Total Environment 408 (6), 1358-1366.<br>DOI: 10.1016/j.scitotenv.2009.10.062 .</p> <p>[9] Yair, A., Kossovsky, A., 2002. Climate and surface properties: hydrological<br>response of small arid and semi-arid watersheds. Geomorphology 42 (1-2), 43-57.<br>DOI: 10.1016/s0169-555x(01)00072-1 .</p> <p>[10] Nunes, J.P., Seixas, J., Keizer, J.J., Ferreira, A.J.D., 2009. Sensitivity of runoff and<br>soil erosion to climate change in two Mediterranean watersheds. part II: assessing<br>impacts from changes in storm rainfall, soil moisture and vegetation cover. Hydrological<br>Processes 23 (8), 1212-1220. DOI: 10.1002/hyp.7250 .</p> <p>[11] Nearing, M.A., Pruski, F.F., and Oā€™neal, M.R., 2004. Expected climate change impacts<br>on soil erosion rates: a review. Journal of Soil and Water Conservation 59 (1), 43-50.</p> <p>[12] de Rigo, D., 2013. Software uncertainty in integrated environmental modelling:<br>the role of semantics and open science. Geophys. Res. Abstr. 15, 13292+. http://<br>arxiv.org/abs/1311.4762 .</p> <p>[13] Jetten, V., Govers, G., Hessel, R., 2003. Erosion models: quality of spatial<br>predictions. Hydrol. Process., 17(5), 887-900. DOI: 10.1002/hyp.1168 .</p> <p>[14] Saltelli, A. and Annoni, P., 2010. How to avoid a perfunctory sensitivity analysis.<br>Environ. Modell. Softw. 25 (12), 1508-1517.</p> <p>[15] de Rigo, D., 2012c. Integrated Natural Resources Modelling and Management:<br>minimal redefinition of a known challenge for environmental modelling. Excerpt<br>from the Call for a shared research agenda toward scientific knowledge freedom,<br>Maieutike Research Initiative. http://www.citeulike.org/groupfunc/15400/<br>home .</p> <p>[16] de Rigo, D., Corti, P., Caudullo, G., McInerney, D., Di Leo, M., San-Miguel-<br>Ayanz, J., 2013. Toward open science at the European scale: Geospatial Semantic<br>Array Programming for integrated environmental modelling. Geophys. Res. Abstr. 15,<br>13245+. DOI: 10.6084/m9.figshare.155703 .</p> <p>[17] Bras, R.L., Tucker, G.E., Teles, V., 2003. Six Myths About Mathematical Modeling<br>in Geomorphology. in: Prediction in Geomorphology, edited by: Wilcock, P.R. and<br>Iverson, R.M., American Geophysical Union, Washington, D.C., 63-79.</p> <p>[18] Stroosnijder, L., 2005. Measurement of erosion: Is it possible?. Catena 64 (2-3), 162-<br>173. DOI: 10.1016/j.catena.2005.08.004 .</p> <p>[19] Croke, J., Nethery, M., 2006. Modelling runoff and soil erosion in logged<br>forests: scope and application of some existing models. Catena 67 (1), 35-49.<br>DOI: 10.1016/j.catena.2006.01.006 .</p> <p>[20] Jones, A., Panagos, P., Barcelo, S., Bouraoui, F., Bosco, C., Dewitte, O., Gardi, C.,<br>Ehrhard, M., HervĆ”s, J., Hiederer, R., Jefferey, S., LĆ¼kewille, A., Marmo, L., Montanarella,<br>L., OlazĆ”bal, C., Petersen, J., Penizek, V., Strassburger, T., TĆ³th, G., van den Eeckhaut,<br>M., van Liederkerke, M., Verheijen, F., Viestova, E., Yigini, Y., 2012. The State of<br>Soil in Europe. A Contribution of the JRC to the European Environment Agencyā€™s<br>Environment State and Outlook Report - SOER 2010. Publications Office of the<br>European Union, Luxembourg, EUR 25186 EN. DOI: 10.2788/77361 .</p> <p>[21] Bosco, C., de Rigo, D., Dijkstra, T., Sander, G., Wasowski, J., 2013. Multi-<br>Scale robust modelling of landslide susceptibility - Regional rapid assessment and<br>catchment robust fuzzy ensemble. IFIP Adv. Inf. Commun. Technol. 413, 321-335.<br>DOI: 10.1007/978-3-642-41151-9_31 .</p> <p>[22] de Vente, J., Poesen, J. Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey,<br>A., Arabkhedri, M., Boix-Fayos, C., 2013. Predicting soil erosion and sediment yield at<br>regional scales: Where do we stand?. Earth-Sci. Rev., 127, 16-29.</p> <p>[23] Van Rompaey, A.J.J., Vieillefont, V., Jones, R.J.A., Montanarella, L., Verstraeten, G.,<br>Bazzoffi, P Dostal, T., Krasa, J., de Vente, J., Poesen, J., 2003. Validation of soil erosion estimates at European scale. European Soil Bureau Research Report, 13, 26.</p> <p>[24] Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal<br>Soil Loss Equation (RUSLE). US Dept Agric., Agr. Handbook, 703.</p> <p>[25] Flanagan, D.C., Ascough II, J.C., Nearing, M.A., Laflen, J.M., 2001. The water erosion<br>prediction project (WEPP) model. In: Harmon, R.S., Doe III, W.W. (Eds.), Landscape<br>Erosion and Evolution Modelling. Kluwer Academic, New York, 145-199.</p> <p>[26] Kirkby, M., Robert, J., Irvine, B., Gobin, A., Govers, G., Cerdan, O., et al, 2003. Pan-<br>European SoilErosion Risk Assesment. EUR 21176 EN.</p> <p>[27] De Roo, A.P.J., Wesseling, C.G., Cremers, N.H.D.T., Offermans, R.J.E., Ritsema, C.J.<br>and Oostindie, K., 1994. LISEM: a new physically-basedhydrologicaland soil erosion<br>model in a GIS-environment: theory and implementation. In: Variability in Stream<br>Erosion and Sediment Transport ta. by L.J. Olive, R.J. Loughran and J., A. Kesby) (Proc.<br>Canberra Symp., December 1994), 439-448. IAHS Publ. no. 224.</p> <p>[28] Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Auerswald,<br>K., Chisci, G., Torri, D., and Styczen, M.E, 1998. The European Soil Erosion Model<br>(EUROSEM): a dynamic approach for predicting sediment transport from fields and<br>small catchments. Earth Surf. Process. Landforms 23, 527-544.</p> <p>[29] Smith, R.E., Goodrich, D.C., Woolhiser, D.A., Unkrich, C.L., 1995b. KINEROS-a<br>kinematic runoff and erosion model. In: Singh, V.P. (Ed.), Computer Models of<br>Watershed Hydrology. Water Resources Publications, Littleton, CO, 697-732.</p> <p>[30] Rusco, E. , Montanarella, L. , Bosco, C., 2008. Soil erosion: a main threats to the<br>soils in Europe. in: Threats to Soil Quality in Europe, edited by: TĆ³th, G., Montanarella,<br>L., and Rusco, E., EUR 23438 EN, 37-45. ISBN: 978-92-79-09529-0 .</p> <p>[31] Angima, S.D., Stott, D.E., Oā€™Neill, M.K., Ong, C.K., Weesies, G.A., 2003. Soil erosion<br>prediction using RUSLE for central Kenyan highland conditions. Agriculture,<br>Ecosystems & Environment 97 (1-3), 295-308. DOI: 10.1016/s0167-8809(03)00011-2 .</p> <p>[32] Bosco, C., Rusco, E., Montanarella, L., Oliveri, S., 2008. Soil erosion risk assessment<br>in the alpine area according to the IPCC scenarios. in: Threats to Soil Quality in<br>Europe, edited by: TĆ³th, G., Montanarella, L., and Rusco, E., EUR 23438 EN, 47-58. ISBN<br>978-92-79-09529-0 .</p> <p>[33] Prasuhn, V., Liniger, H., Gisler, S., Herweg, K., Candinas, A., ClĆ©ment, J.P., 2013.<br>A high-resolution soil erosion risk map of Switzerland as strategic policy support<br>system. Land Use Policy 32, 281-291. DOI: 10.1016/j.landusepol.2012.11.006 .</p> <p>[34] de Rigo, D., 2012a. Semantic Array Programming for Environmental Modelling:<br>Application of the Mastrave Library. Int. Congress on Environmental Modelling<br>and Software. Managing Resources of a Limited Plant, Pathways and Visions<br>under Uncertainty, Sixth Biennial Meeting, pp. 1167-1176. http://www.iemss.org/<br>iemss2012/proceedingsD3_1_0715_deRigo.pdf .</p> <p>[35] de Rigo, D., 2012b. Semantic array programming with Mastrave - introduction to<br>semantic computational modelling. http://mastrave.org/doc/MTV-1.012-1 .</p> <p>[36] de Rigo, D., Bosco, C., 2011. Architecture of a Pan-European framework for<br>integrated soil water erosion assessment. IFIP Adv. Inf. Commun. Technol. 359, 310-<br>318. DOI: 10.1007/978-3-642-22285-6_34 .</p> <p>[37] de Rigo, D., Rodriguez-Aseretto, D., Bosco, C., Di Leo, M., San-Miguel-Ayanz, J.,<br>2013a. An architecture for adaptive robust modelling of wildfire behaviour under<br>deep uncertainty. IFIP Adv. Inf. Commun. Technol. 413, 367-380. DOI: 10.1007/978-3-<br>642-41151-9_35 .</p> <p>[38] de Rigo, D., Barredo, J. I., Busetto, L., Caudullo, G., San-Miguel-Ayanz, J., 2013b.<br>Continental-Scale living forest biomass and carbon stock: a robust fuzzy ensemble<br>of IPCC tier 1 maps for Europe. IFIP Adv. Inf. Commun. Technol. 413, 271-284.<br>DOI: 10.1007/978-3-642-41151-9_26 .</p> <p>[39] Di Leo, M., de Rigo, D., Rodriguez-Aseretto, D., Bosco, C., Petroliagkis, T.,<br>Camia, A., San-Miguel-Ayanz, J., 2013. Dynamic data driven ensemble for wildfire<br>behaviour assessment: a case study. IFIP Adv. Inf. Commun. Technol. 413, 11-22.<br>DOI: 10.1007/978-3-642-41151-9_2 .</p> <p>[40] Panagos, P., Jones, A., Bosco, C., Senthil Kumar, P.S., 2011. European<br>digital archive on soil maps (EuDASM): preserving important soil data<br>for public free access. International Journal of Digital Earth, 4(5), 434-443.<br>DOI: 10.1080/17538947.2011.596580 .</p> <p>[41] Frank, S., FĆ¼rst, C., Witt, A., Koschke, L., Makeschin, F., 2014. Making use of the<br>ecosystem services concept in regional planning - trade-offs from reducing water<br>erosion. Landscape Ecology, 1-15. DOI: 10.1007/s10980-014-9992-3 .</p> <p>[42] Vanacker, V., Bellin, N., Molina, A., Kubik, P 2014. Erosion regulation as a function of human disturbances to vegetation cover: a conceptual model. Landscape Ecology<br>29 (2), 293-309. DOI: 10.1007/s10980-013-9956-z .</p> <p>[43] Bogaert, J., Bamba, I., Koffi, K., Sibomana, S., Djibu, J.-P., Champluvier, D., Robbrecht,<br>E., De CanniĆØre, C., Visser, M., 2008. Fragmentation of forest landscapes in central<br>Africa: Causes, consequences and management. In: Lafortezza, R., Sanesi, G., Chen,<br>J., Crow, T. (Eds.), Patterns and Processes in Forest Landscapes. Springer Netherlands,<br>pp. 67-87. DOI: 10.1007/978-1-4020-8504-8_5 .</p> <p>[44] Sadeghi, S. H. R., Jalili, K., Nikkami, D., 2009. Land use optimization in watershed<br>scale. Land Use Policy 26 (2), 186-193. DOI: 10.1016/j.landusepol.2008.02.007 .</p> <p>[45] Simonovic, S. P., 2012. Floods in a changing climate. Cambridge University Press.<br>ISBN: 9781107018747 .</p> <p>[46] de la Rosa, D., Moreno, J. A., Mayol, F., BonsĆ³n, T., 2000. Assessment of soil erosion vulnerability in western Europe and potential impact on crop productivity due to<br>loss of soil depth using the ImpelERO model. Agriculture, Ecosystems & Environment<br>81 (3), 179-190. DOI: 10.1016/s0167-8809(00)00161-4 .</p> <p>[47] de Rigo, D., Rizzoli, A. E., Soncini-Sessa, R., Weber, E., Zenesi, P., 2001. Neuro-<br>dynamic programming for the efficient management of reservoir networks. In:<br>Proceedings of MODSIM 2001, International Congress on Modelling and Simulation.<br>Vol. 4. Modelling and Simulation Society of Australia and New Zealand, pp. 1949-1954.<br>DOI: 10.5281/ZENODO.7481 .</p> <p>[48] Castelletti, A., de Rigo, D., Tepsich, L., Soncini-Sessa, R., Weber, E., 2008. On-Line<br>design of water reservoir policies based on inflow prediction. IFAC-PapersOnLine<br>17 (1), 14540-14545, special issue: "Proceedings of the 17th IFAC World Congress".<br>DOI: 10.3182/20080706-5-KR-1001.02463 .</p> <p>[49] Potapov, A., 2008. Stochastic model of lake system invasion and its optimal control:<br>neurodynamic programming as a solution method. Natural Resource Modeling 22 (2),<br>257-288. DOI: 10.1111/j.1939-7445.2008.00036.x .</p> <p>[50] Sabbadin, R., Spring, D., Rabier, C.-E., 2007. Dynamic reserve site selection<br>under contagion risk of deforestation. Ecological Modelling 201 (1), 75-81.<br>DOI: 10.1016/j.ecolmodel.2006.07.036 .</p> <p>[51] Ramey, C., Fox, B., 2006. Bash reference manual: reference documentation for<br>Bash edition 2.5b, for Bash version 2.05b. Network Theory Limited.</p> <p>[52] Eaton, J. W., Bateman, D., Hauberg, S., 2008. GNU Octave Manual Version 3. A high-<br>level interactive language for numerical computations. Network Theory Limited,<br>ISBN: 0-9546120-6-X .</p> <p>[53] ESRI, 2011. Create Random Points (Data Management). ArcGIS 10.0 Desktop<br>Help Library. http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.<br>html#/Create_Random_Points/00170000002r000000/ .</p> <p>[54] BĆ¼ttner, G., Maucha, G., Kosztra, B., 2011. European validation of land cover<br>changes in CLC2006 project. In: HalounovĆ”, L. (Ed.), Remote Sensing and<br>Geoinformation not only for Scientific Cooperation. ISBN: 978-80-01-04868-9 .</p> <p>[55] European Environment Agency, 2011. Corine Land Cover 2006 raster data<br>- version 15 (08/2011). http://www.eea.europa.eu/data-and-maps/data/<br>corine-land-cover-2006-raster-1 .</p> <p>[56] Kempeneers, P., Sedano, F., Seebach, L. M., Strobl, P., San-Miguel-Ayanz, J., 2011. Data<br>fusion of different spatial resolution remote sensing images applied to Forest-Type<br>mapping. Geoscience and Remote Sensing, IEEE Transactions on 49 (12), 4977-4986.<br>DOI: 10.1109/tgrs.2011.2158548 .</p> <p>[57] Warren S.D., Mitasova H., Landsberger S., Iskander F. Y., Ruzycki T.S., Senseman G.M., 2005. Validation of a 3-D enhancement of the universal soil loss equation for prediction of soil erosion and sediment deposition. Catena 64, 281-296.</p> <p>[58] Berry, L., Olson, J., Campbell, D., 2003. Assessing the extent, cost and impact of<br>land degradation at the national level: findings and lessons learned from seven pilot<br>case studies. Tech. rep. commissioned by Global Mechanism with support from the<br>World Bank. http://global-mechanism.org/edocman/download.php?fname=<br>cost-of-land-degradation-case-studies.pdf .</p> <p>[59] Kapalanga, T.S., 2008. A review of land degradation assessment methods. Tech. rep.,<br>Land Restoration Training Programme. http://www.unulrt.is/static/fellows/<br>document/taimi-1-.pdf .</p> <p>[60] Bosco, C. and de Rigo, D., 2013. Land Cover and Soil Erodibility within the e-<br>RUSLE Model. Scientific Topics Focus 1, MRI-11b13, Maieutike Research Initiative.<br>DOI: 10.6084/m9.figshare.856670 .</p> <p>[61] de Vente, J., Poesen, J., Verstraeten, G., Van Rompaey, A., Govers, G., 2008. Spatially<br>distributed modelling of soil erosion and sediment yield at regional scales in spain.<br>Global and Planetary Change 60 (3-4), 393-415. DOI: 10.1016/j.gloplacha.2007.05.002 .</p> <p>[62] Poesen, J. and Lavee, H., 1994. Rock fragments in top soils: significance and<br>processes. Catena 23, 1-28.</p> <p>[63] Poesen, J. and Ingelmo-Sanchez, F., 1992. Runoff and sediment yield from topsoils<br>with different porosity as affected by rock fragment cover and position. Catena 19,<br>451-474.</p> <p>[64] Poesen, J., Torri, D., Bunte, K., 1994. Effects of rock fragments on soil erosion by<br>water at different spatial scales: a review. Catena 23, 141-166.</p> <p>Ā </p> <p>Ā </p> <p>Ā </p> <p>Ā </p> <p>Ā </p> <p>Ā </p

    Interactive comment (reply to Anonymous Referee 3) on Modelling soil erosion at European scale: towards harmonization and reproducibility - by Bosco et al

    No full text
    <p>Cite as:</p> <p>Bosco, C., de Rigo, D., Dewitte, O., Poesen, J., Panagos, P., 2014. Interactive comment (reply to Anonymous Referee 3) on Modelling soil erosion at European scale: towards harmonization and reproducibility - by Bosco et al. Nat. Hazards Earth Syst. Sci. Discuss. 2, C1786-C1795.</p> <p>Ā </p> <p><strong>Interactive comment (reply to Anonymous Referee 3) on Modelling soil erosion at European scale: towards harmonization and reproducibility - by Bosco et al<br></strong></p> <p>Claudio Bosco, Daniele de Rigo, Olivier Dewitte, Jean Poesen, Panos Panagos</p> <p>Ā </p> <p>Throughout the public discussion of our article Bosco et al. (Nat. Hazards Earth Syst. Sci. Discuss., 2, 2639-2680, 2014), the Anonymous Referee 3 provided (Nat. Hazards Earth Syst. Sci. Discuss., 2, C1592-C1594, 2014) a variety of insights. This work presents our replies to them.</p

    Interactive comment (reply to Dino Torri) on Modelling soil erosion at European scale: towards harmonization and reproducibility - by Bosco et al

    No full text
    <p>Cite as:</p> <p>Bosco, C., de Rigo, D., Dewitte, O., Poesen, J., Panagos, P., 2014. Interactive comment (reply to Dino Torri) on Modelling soil erosion at European scale: towards harmonization and reproducibility - by Bosco et al. Nat. Hazards Earth Syst. Sci. Discuss. 2, C671-C688.</p> <p>Ā </p> <p><strong>Interactive comment (reply to Dino Torri) on Modelling soil erosion at European scale: towards harmonization and reproducibility - by Bosco et al</strong></p> <p>Ā Claudio Bosco, Daniele de Rigo, Olivier Dewitte, Jean Poesen, Panos Panagos</p> <p>Ā </p> <p>During the public discussion of our article Bosco et al. (Nat. Hazards Earth Syst. Sci. Discuss., 2, 2639-2680, 2014), D. Torri provided numerous insights (Nat. Hazards Earth Syst. Sci. Discuss. 2, C528-C532, 2014). This work offers our replies to them.</p

    MOESM4 of Malaria prevalence metrics in low- and middle-income countries: an assessment of precision in nationally-representative surveys

    No full text
    Additional file 4: Table S3. Comparison of absolute bias data for Kenya and Rwanda where the spatial random sample represented 20% (Sample 1), 30% (Sample 2) and 40% (Sample 3) hold out set of the clusters. Absolute bias is the difference between the mean from simple random sampling and that generated after MCMC 50,000 iteration in the different cluster-sample

    MOESM5 of Malaria prevalence metrics in low- and middle-income countries: an assessment of precision in nationally-representative surveys

    No full text
    Additional file 5: Figure S1. Convergence diagnostic: Example of trace plots extracted for malaria prevalence survey parameters in the 2010 Senegal DHS for the monitored parameters over the duration of model run
    corecore